(c) 1983 The Chemical Society of Japan

Substituent Effects on the Dissociation Constants of 1-Arvl-5-hydroxy-2-hydroxymethyl-4-pyridones

Kimiaki Imafuku,* Kumio Takahashi,† and Hisashi Matsumura†† Department of Chemistry, Faculty of Science, Kumamoto University, Kurokami, Kumamoto 860 (Received December 25, 1982)

Six new 1-aryl-5-hydroxy-2-hydroxymethyl-Synopsis. 4-pyridones were synthesized and their dissociation constants were measured. Hammett analysis of pK_a values for proton gain and proton loss gave the following equations: pK_1 = $2.74 - 0.34\sigma$ and p $K_2 = 8.80 - 0.36\sigma$, respectively.

Hahn et al.^{1,2)} obtained 1-aryl-3-hydroxy-4-pyridones by the reactions of comenic acid and meconic acid with aniline derivatives. However, there is no further investigation in a detailed manner.

In the present work, we wish to report the synthesis of 1-aryl-5-hydroxy-2-hydroxymethyl-4-pyridones from kojic acid and the effects of the substituent in the benzene ring on the dissociation constants.

Results and Discussion

Synthesis. Condensation of kojic acid (1) with six anilines (2a-f) were respectively carried out, according to the Hahn's method, 1,2) to afford 1-aryl-5hydroxy-2-hydroxymethyl-4-pyridones (3a-f). However, their yields were not necessarily good. All of the 4-pyridones gave a violet color with iron(III) chloride solution.

 $R = m - OCH_3$ R = H $R = p - CH_3$ R = p-Clb $R = p - OCH_3$ $R = p - COCH_3$

Dissociation Constants. The dissociation constants of six 1-aryl-5-hydroxy-2-hydroxymethyl-4-pyridones were determined spectrophotometrically in water at 25 °C. The results are summarized in Table 1, where pK_1 and pK_2 values represent respectively the dissocia-

Table 1. Dissociation constants

R	p <i>K</i> ₁	pK_2
p-OCH ₃	2.85	8.89
$p\text{-CH}_3$	2.82	8.86
H	2.64	8.82
$m\text{-}\mathrm{OCH}_3$	2.76	8.78
<i>p</i> -Cl	2.39	8.69
p-COCH ₃	2.57	8.62

Hiroshima 730.

Present address: Hiroshima Prefectural Government,

Ikeda, Kumamoto 860.

†† Present address: Kumamoto Institute of Technology,

tion constants for the proton gain and proton loss of the 4-pyridones. Both pK_1 and pK_2 values are respectively smaller than those of 6-substituted 3-hydroxy-1methyl-4-pyridones,3) because of inductive effect of the aryl group. When these pK values were plotted against Hammett σ constants, 4) the following equations were obtained by the least-square method.

$$pK_1 = 2.74 - 0.34\sigma$$
 $(r = 0.867, s = 0.04)$
 $pK_2 = 8.80 - 0.36\sigma$ $(r = 0.980, s = 0.02)$

The ratio of the ρ value for 3 against the ρ value for 1methyl-3-hydroxypyridones3) is 0.29 for the proton gain and 0.34 for the proton loss. These values are comparable to the transmission factor (π =0.3) for m- and *p*-phenylene groups.⁵⁾

Experimental

All the melting points were measured on a Yanagimoto MP-S2 melting point measuring apparatus and are uncorrected. The IR and UV spectra were taken on a JASCO IRA-1 and on a Hitachi EPS-3T spectrophotometer, respectively. The pH values were measured by a Hitachi-Horiba F-5 pH meter. The pKa determination was carried out according to the method of Albert and Serjeant. 6)

5-Hydroxy-2-hydroxymethyl-1-phenyl-4-pyridone (3a). mixture of kojic acid (1) (1.0 g) and aniline (2a) (1.3 ml) in water (3.3 ml) was heated in the presence of 12 M (1 M=1 mol dm⁻³) hydrochloric acid (0.5 ml) in a sealed tube on a water bath for 4 h. Water (6.7 ml) was added to the mixture to precipitate 3a (280 mg, 18.3%). Mp 231 °C (from methanol); IR (KBr) 1653 cm⁻¹; UV (CH₃OH) 224 (sh, $\log \varepsilon$ 4.33), 287 nm (4.25). Found: C, 66.15; H, 5.18; N, 6.44%. Calcd for $C_{12}H_{11}NO_3$: C, 66.35; H, 5.10; N, 6.45%.

5-Hydroxy-2-hydroxymethyl-1-(p-methylphenyl)-4-pyridone (3b). A mixture of kojic acid (1) (1.5 g) and p-toluidine (2b) (2.4 g) in water (3.5 ml) was treated in the presence of 12 M hydrochloric acid (0.5 ml) and worked up, as mentioned above, to afford **3b** (240 mg, 9.8%). Mp 215—217 °C (from methanol); IR (KBr) 1635 cm $^{-1}$; UV (CH $_3 OH)$ 227 (log ϵ 4.32), 288 nm (4.28). Found: C, 67.41; H, 5.67; N, 6.08%. Calcd for $C_{13}H_{13}NO_3$: C, 67.52; H, 5.67; N, 6.06%.

5-Hydroxy-2-hydroxymethyl-1-(p-methoxyphenyl)-4-pyridone (3c). A mixture of kojic acid (1) (1.5 g) and p-anisidine (3c) (2.6 g) in water (3.5 ml) was treated in the presence of 12 M hydrochloric acid (0.5 ml) and worked up, as mentioned above, to afford **3c** (130 mg, 5.0%). Mp 231—233 °C (from methanol); IR (KBr) 1635 cm⁻¹; UV (CH₃OH) 244 (log ε 4.43), 288 nm (4.30). Found: C, 63.24; H, 5.23; N, 5.72%. Calcd for $C_{13}H_{13}NO_4$: C, 63.15; H, 5.30; N, 5.67%.

5-Hydroxy-2-hydroxymethyl-1-(m-methoxyphenyl)-4-pyridone (3d) A mixture of kojic acid (1) (1.4 g) and m-anisidine (2d) (1.5 g) in water (1.0 ml) was heated in the presence of 12 M hydrochloric acid (0.5 ml) in a sealed tube at 130—150 °C for 14 h. The reaction mixture was worked up, as mentioned above, to give **3d** (170 mg, 7.0%). Mp 206—208 °C (from methanol); IR (KBr) 1645 cm⁻¹; UV (CH₃OH) 222 (log ε 4.46), 288 nm (4.29). Found: C, 63.10; H, 5.29; N, 5.73%. Calcd for

 $C_{13}H_{13}NO_4$: C, 63.15; H, 5.30; N, 5.67%.

1-(p-Chlorophenyl)-5-hydroxy-2-hydroxymethyl-4-pyridone (3e). A mixture of kojic acid (1) (1.5 g) and p-chloroaniline (2e) (4.0 g) in water (8 ml) was treated in the presence of 12 M hydrochloric acid (0.2 ml), as mentioned above, to give 3e (30 mg, 1.1%). Mp 230—233 °C (from water); IR (KBr) 1636 cm⁻¹; UV (CH₃OH) 224 (sh, log ε 4.40), 290 nm (4.27). Found: C, 57.14; H, 3.97; N, 5.45%. Calcd for $C_{12}H_{10}ClNO_3$: C, 57.27; H, 4.01; N, 5.57%.

1-(p-Acetylphenyl)-5-hydroxy-2-hydroxymethyl-4-pyridone (3f). A mixture of kojic acid (1) (1.0 g) and p-aminoacetophenone (2f) (2.7 g) in water (8 ml) was treated in the presence of 12 M hydrochloric acid (0.3 ml), as mentioned above, to give 3f (560 mg, 30.7%). Mp 240—243 °C (from methanol); IR (KBr) 1703, 1737 cm⁻¹; UV (CH₃OH) 228 (log ε 4.31), 292 nm (4.27). Found: C, 65.09; H, 5.07; N, 5.40%. Calcd for $C_{14}H_{18}NO_4$: C, 64.86; H, 5.05; N, 5.40%.

References

- 1) V. Hahn and S. Kukolja, Croat. Chim. Acta, 33, 137 (1961).
- 2) K. Blažević and H. Hahn, Croat. Chim. Acta, 38, 113 (1966).
- 3) K. Imafuku, K. Takahashi, and H. Matsumura, Bull. Chem. Soc. Jpn., 52, 111 (1979).
 - 4) H. H. Jaffé, Chem. Rev., 53, 191 (1953).
- 5) O. Exner, "Advances in Linear Free Energy Relationships," ed by N. B. Chapman and J. Shorter, Plenum Press, London and New York (1972), p. 25.
- 6) A. Albert and E. P. Serjeant, "Ionization Constants of Acids and Bases," 1st ed, Methuen and Co., London (1962), Chap. 4.